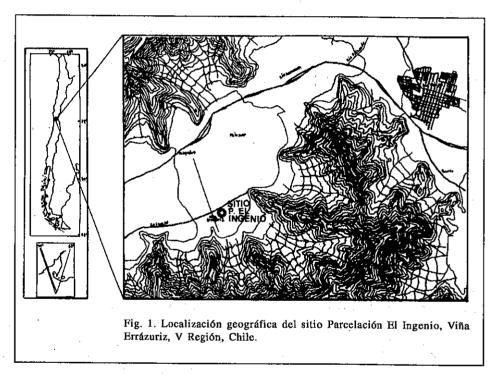
ARQUEOBOTÁNICA DEL SITIO INTERMEDIO TARDÍO, PARCELACIÓN EL INGENIO (VIÑA ERRÁZURIZ, V REGIÓN): DESAFÍO METODOLÓGICO EN UN SITIO ARADO

Luciana Ouiroz

En ambientes templados, los recursos vegetales son abundantes y fácilmente accesibles, teniendo un lugar importante en las estrategias de subsistencia observadas en las poblaciones prehistóricas. Ello determina, que una fracción significativa de los restos recuperados en un sitio arqueológico esté constituido por los restos vegetales. A esta fuente considerable de información se accede a través de la arqueobotánica.

Los estudios arqueobotánicos de los sitios de Chile Central son poco numerosos y recientes. No obstante ello, los trabajos existentes en esta zona han abarcado casi todos los períodos de la prehistoria local. Es así que se ha dado a conocer información relativa al uso de recursos vegetales durante el Período Arcaico a través del análisis arqueobotánico de La Cueva de El Carrizo (HENRIQUEZ 2000, en prensa) y Las Morrenas (PLANELLA y TAGLE 2000); el Período Temprano principalmente a través del sitio La Granja (PLANELLA y TAGLE 1998), o El Intermedio Tardío con el sitio Blanca Gutierrez (PAVLOVIC et al. 1998).

La historia del uso de recursos vegetales en la Región central de Chile se ha planteado como una dicotomía entre recolección de recursos botánicos y su manejo vía prácticas de cultivo como la horticultura o la agricultura. En cada uno de los períodos definidos para la Prehistoria regional se destacan ejemplos de cada una de estas formas de explotación de recursos. Es así por ejemplo, que en el Período Arcaico se sabe de la recolección de Cyperaceae en el sitio Las Morrenas, al igual que existen indicios de cultivo con Chenopodium quinoa (quínoa) (PLANELLA y TAGLE 2000). En el Período Temprano, se reportan ejemplos de recolección en Lonquén, Radio Estación Naval, fundamentalmente de Aristotelia Chilensis (maqui) y Rubus sp. (frutilla chilena). En El Carrizo (HENRÍQUEZ 2000) se identificó además, Muehlenbeckia hastulata (quilo, voqui negro) y Echinopsis chilensis (quisco, tunilla). Para este período se ha planteado asimismo, la existencia de cultivo en El Cebollar, donde se encontró especímenes de C. quinoa con su respectiva banda perimetral (BELMAR y QUIROZ 2000a), y en La Granja con C. quinoa, Phaseolus sp. (poroto), Zea Mays (maíz), Cucurbita sp. (zapallo), y Bromus sp. (cereal) (PLANELLA y TAGLE 1998). Por último, en el Período Intermedio Tardío, se observa el uso de recursos vegetales recolectados y cultivados. detectándose más frecuentemente la presencia de taxa cultivados que en los períodos anteriores, tales como C. quinoa, Zea Mays (en Popeta, Puangue, Peñaflor, BELMAR y QUIROZ 1999, 2000b), Phaseolus sp. y Cucurbita sp. (en Huechún, MASSONE et. al. 1998) y Madia sativa (Madi, en El Carrizo (HENRÍQUEZ 2000). En los sitios Popeta, Puangue y Peñaflor se detecta la presencia de cultivos en contextos tan particulares como el contenido de una vasija entera o rasgos-fogones (BELMAR y QUIROZ 1999, 2000b). A pesar de que estos tres sitios están ubicados en terrenos cultivados, se observa algún grado de conservación de los depósitos.


Sin embargo, el estudio de los sitios mencionados en la zona central de Chile se ha visto favorecido debido a que sus depósitos presentan baja o nula perturbación. No obstante, gran parte de los sitios arqueológicos de esta región se encuentran en zonas agrícolas, lo que determina condiciones adversas para la conservación de los contextos y el análisis de los restos arqueobotánicos. Ello plantea un desafío doble para el desarrollo de esta disciplina: por un lado el desafío metodológico, el que tiene por finalidad rescatar información relevante en sitios no perturbados y en segundo lugar, ampliar la base arqueobotánica para el estudio de la prehistoria de Chile Central.

En efecto, es relevante preguntarse si la información fragmentaria presente en contextos disturbados

permite por ejemplo, la reconstrucción de usos de plantas en la prehistoria. En un sentido inverso, es pertinente conocer si es posible contribuir a la reconstitución de la historia de impacto y perturbación causada por la presencia de asentamientos humanos.

Con el fin de aportar al conocimiento de la arqueobotánica de Chile Central, aquí se estudia el sitio Parcelación El Ingenio (Viña Errázuriz, Provincia de Los Andes). Este sitio bordea el costado norte del estero Lo Campo que nace en la localidad de Palomar y desemboca en el río Aconcagua después de 12 Km (Fig. 1). Este estero recibe alimentación de numerosas aguas subterráneas las que facilitaron en algún momento el crecimiento de bosques de plantas mesófitas e higrófilas (HERMOSILLA et al. 1999). En la actualidad predominan los taxa de origen foráneo como Foeniculum vulgare, Taraxacum officinale, Brassica campestris, Trifolium sp., Medicago sp., Plantago sp. y Conium maculatum, en desmedro de los taxa de origen chileno o americano, como Xanthium cavanillesii, Baccharis linearis, Maytenus boaria, Geranium core-core, Acacia caven, Argemone subsiformis o Eleusine tristachya.

Fuera del sitio, en las laderas de los cerros que limitan Viña Errázuriz, se encuentran fundamentalmente taxa de origen nativo. En forma concordante. se ha mencionado que existió un bosque de Patagua (Crinodendron patagua), Canelos (Drimys winteri) y arrayanes (Myrceugenia sp.) en las proximidades del estero Lo Campo (HERMOSILLA et al. 1999). Esta evidencia permite esperar la presencia de algunos de estos

taxa entre los restos botánicos del sitio. A la vez, la presencia de estos taxa en Parcelación El Ingenio pueden relacionarse con a la historia climática de la región y usarse como indicadores de condiciones ambientales húmedas. Estas condiciones habrían existido para los períodos Temprano e Intermedio Tardío (HEUSSER 1983, VARELA y VILLAGRÁN 1990, SAAVEDRA et al. 2000).

En Parcelación El Ingenio se han caracterizado ocupaciones Temprana, Intermedia Tardía y Tardía, las cuales se han fechado entre 600 d.C. y 1520 d.C. El Período Temprano se circunscribe entre las fechas de 600 d.C y 1190 d.C. con la presencia de poblaciones Bato y Llolleo. El Intermedio Tardío, a partir de 1200 d.C, permanece hasta los momentos de contacto de la población Aconcagua local y la población Diaguita e Inka Diaguita (HERMOSILLA et al. 1999). Parcelación El Ingenio ha sido descrito como un sitio habitacional. Ello en base al análisis de fragmentería cerámica y restos líticos. Esta fragmentería sugiere un espectro amplio de actividades, vinculables principalmente a labores domésticas. A pesar del bajo estado de conservación del sitio, se han detectado rasgos notorios indicadores de actividades especializadas, como áreas de fogón, y áreas de concentración de material lítico (HERMOSILLA et al. 1999).

Actualmente, Parcelación El Ingenio corresponde a un terreno cultivado. La larga historia de utilización de estas tierras ha causado un alto grado de perturbación de los depósitos prehistóricos. Ello ha determinado condiciones de conservación bajas que dificultan la posibilidad de evaluar todas las interrogantes que dicen relación con el origen de la evidencia que se analiza. Aquí, se entregarán los resultados del análisis de la evidencia botánica presente en el sitio Parcelación El Ingenio. Ello con el fin de determinar el contexto de la depositación, así como evaluar el efecto de la perturbación sobre la evidencia botánica.

Métodos

Parcelación El Ingenio está ubicado en el pueblo de Viña Errázuriz (UTM 328.130 E y 6370.505 N) y abarca una superficie de 400 m x 671 m aproximadamente (Fig. 2) (véase HERMOSILLA et al. 1999, para detalles de la excavación). Se examinó todo el material vegetal contenido en pozos 10 de sondeo. Los pozos se extrajeron desde tres cuadrículas excavadas (G-1, H v C), así como del camino que limitaba el sitio en su lado Este (Fig. 2). Estas últimas muestras fueron tomadas a manera de control, debido a que este sector marginal no presentaba signo de remoción reciente. Las cuadrículas se ubicaron a una distancia de 30 m cada una. A lo largo del camino, se excavaron 6 pozos cada 50 m. El pozo 7 se emplazó a una distancia de 2.60 m de la cerca, y a 47,8 m del pozo 4 (Fig. 2).

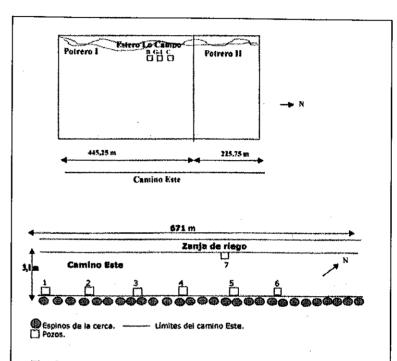


Fig. 2. Esquema del sitio Parcelación El Ingenio, y camino adyacente. Se indica posición relativa de cuadrículas excavadas (G-1, H y C) y esquema del Camino Este, adyacente a sitio El Ingenio, con ubicación relativa de pozos extraídos para flotación.

Los pozos fueron de 20 cm², y se excavaron por niveles artificiales de 10 cm, alcanzando profundidades variables entre 40 y 70 cm. En los pozos H y C se llegó hasta los 40 cm de profundidad debido a la presencia invasiva de agua.

Cada muestra de suelo fue flotada para extraer el material vegetal. Ello se realizó mediante el lavado de los sedimentos, de manera a separar los elementos pesados (de ahora en adelante **fracción pesada**, como restos microlíticos, cerámicos, óseos, semillas grandes) de los elementos livianos (de ahora en adelante **fracción liviana**, como semillas, raíces o pequeños huesos). El agua se mantuvo con un flujo constante, y rebalsó en un filtro (malla de < 1 mm de ancho) que retuvo la fracción liviana, mientras que la fracción pesada decantó en un filtro (malla de 2 mm de ancho) colocado en el fondo del recipiente (CLASON y PRUMMEL 1977, WATSON 1976, DALY 1969, DAWSON 1969, STRUEVER 1968).

Cada muestra, fracción pesada y liviana incluidas, fue secada en horno a 65° durante 10 horas. Ambas fracciones fueron guardadas en forma separada. Los restos recuperados en la fracción pesada, se ordenaron según la naturaleza de los materiales (óseos, cerámicos, líticos) y fueron analizadas por separado. Por último, se analizaron las muestras de fracción liviana, bajo lupa binocular con aumentos 1X, 2X. El material recuperado se clasificó en categorías de: flor, fruto o semilla. Asimismo se registró su grado de conserva-

ción con los criterios carbonizado/no carbonizado y fragmentado/no fragmentado. Finalmente, se realizó la identificación taxonómica de los restos, utilizando claves especializadas (Martin & Barkley, 1973, Matthei, 1998) así como colecciones de referencia.

Resultados

Se extrajo un promedio de 5,2 litros (±1,06 litros) por nivel con un total de 317 litros para los 61 niveles excavados. Se recuperó de este volumen un total de 40.088 restos vegetales. Ellos estuvieron compuestos por 39.965 semillas (99,69%), 31 frutos (0,077%), y 92 flores (0,22%). De este total fue posible identificar 39.593 restos (98,77%), donde se ha determinado 64 taxa. Sólo 461 restos (1,14%) permanecen sin identificar y 29 son inidentificables (0,07%). En la Tabla 1 se detalla el estado de la identificación de los restos vegetales recuperados en el sitio, en función de su estado de conservación.

Los taxa mayormente representados en el sitio fueron: Poaceae sp. 2, Portulaca sp., Chenopodium album, Cyperus sp., Scirpus sp., Malva sp., Echinochloa sp., Compositae sp. 1, Polygonum aviculare y Poaceae sp 1. Éstos corresponden en su mayoría a plantas herbáceas pertenecientes a la categoría de malezas comunes (Tabla 2). Taxa asociados a zonas húmedos fueron: Cyperus sp., Scirpus sp. y Polygonum aviculare, y alcanzaron un 9% del total. Los taxa Scirpus sp., Cyperus sp., Polygonum sp., y No Identificados son los restos vegetales carbonizados más frecuentes. Los restos más escasos fueron: Poaceae sp. 1, Leucanthemum vulgare, Rubus sp., Verbena sp., Aristotelia chilensis, Muehlenbeckia hastulata, semilla 1 y un ejemplar de Zea Mays (Tabla 3).

Los taxa identificados comparten mayoritariamente un origen Post-hispánico con 84,72% de representación, seguido por los taxa de origen mixto¹ con 12,38% y los de origen Prehispánico con 1,59% (Tabla 4). Poaceae sp. 2, Portulaca sp., C. album, Polygonum aviculare, Atriplex sp., contribuyeron en forma significativa a la alta representación de restos de origen Post-hispánico. Mientras que Cyperus sp., Scirpus sp., Poaceae, Compositae y Polygonum sp. son restos de origen Mixto. Los taxa Calandrinia sp., cf. Opuntia sp., Cuscuta suavolens, Cactaceae (N=20), Muelehlenbeckia hastulata, Aristotelia chilensis, son de origen prehispánico. Ellos forman parte de la cubierta vegetal presente actualmente en los alrededores del sitio.

El origen de la muestra arqueobotánica parece afectar el número, así como el estado de conservación de la misma. Es así que desde las cuadrículas se extrajeron 8.183 semillas con una densidad de 101,77 unidades/litro, 18 frutos con una densidad de 0,22 unidades/litro, y 27 flores con una densidad de 0,33 unidades/litro. De éstos se ha identificado 96,4% restos, 3.48% no se ha identificado y 0,1% son inidentificables. Entre los restos identificados se distinguen 2.466 (29,97%) restos carbonizados y 5.465 (66,4%) restos no carbonizados. Los restos sin identificar totalizan 182 unidades (2,22%), entre los cuales se contabiliza 106 no carbonizados (1,29%). Los restos inidentificables son 9 de los cuales sólo uno no está carbonizado (Tabla 5). En los pozos se ha recuperado una suma de 31.782 semillas con una densidad de 134,15 unidades/litro, 13 frutos con una densidad de 0,054 unidades/litro y 65 flores con una densidad de 0,27 unidades/litro. Se cuenta con 31.666 (99,39%) restos identificados, 174 (0,46%) sin identificar, y 20 (0,062%) inidentificables (Tabla 5)

La representación de los taxa cambió entre las unidades de excavación. Es así que en las cuadrículas cuatro taxa acumularon el 72,3% de la abundancia. Éstos fueron Chenopodium album, Cyperus sp., Scirpus sp., Echinochloa sp. y Poaceae sp. 2 (Tabla 6). En los pozos por el contrario, sólo dos taxa acumularon el 83,2% de la muestra, con Poacaee sp. 2 y Portulaca sp. (Tabla 6). Igualmente el número de restos carbonizados fue mayor en las cuadrículas en comparación a los restos recuperados desde los pozos. La representación de taxa Post-hispánicos y mixto cambió entre unidades de excavación. Es así que en los pozos se encuentran sobre-representados los taxa de origen Post-

hispánicos los que alcanzaron un 94%. En las cuadrículas sin embargo, estos taxa alcanzaron un 52% de la muestra (Tabla 7). Asimismo existe discrepancia entre unidades para los taxa de origen mixto, los cuales alcanzan un 43% en las cuadrículas, y sólo un 4,5 % en los pozos (Tabla 7). Finalmente los taxa prehispánicos encontraron una representación similar en ambas unidades con un valor menor al 2% en cada una (Tabla 7).

TABLA 1: Número de restos arqueobotánicos según su estado de conservación, recuperados e identificados en el sitio Parcelación El Ingenio (Viña Errázuriz, V región). Entre paréntesis se indican porcentajes.

	ESTADO DE CO	· .	
ESTADO IDENTIFICACIÓN	Carbonizados	No Carbonizados	TOTAL
Identificado	2.900(7,23)	36.693(91,53)	39.593(98.76)
No Identificado	265(0,066)	201(0,5)	466(0,56)
Inidentificable	27(0,067)	2(0,0049)	29(0,071)
Total	3.192(7,96)	36.896(92,03)	40.088(100)

TABLA 2. Número de taxa vegetales identificados en el conjunto de restos arqueobotánicos analizados para el sitio Parcelación El Ingenio (Viña Errázuriz, V Región). Número entre paréntesis corresponde a porcentaje.

<u>TAXÓN</u>	Cantidad de ejemplares	TAXÓN	Cantidad de ejemplares	
Aristotelia chilensis	2(0,002)	Malva sp.	748(1,86)	
Acacia melanoxylon	7(0,017)	Muehlenbeckia hastulata	2(0,004)	
Anthemis cotula	4(0,009)	Myosotis arvensis	2(0,004)	
Atriplex sp.	142(0,35)	Cf. Opuntia sp.	1(0,002)	
Avena sp.	12(0,020)	Oxalis stricta	1(0,002)	
Bromus sp.	25(0,062)	Panicum sp.	96(0,23)	
Cactaceae	3(0,007)	Papaver somniferum	1(0,002)	
Calandrinia sp.	293(0,73)	Physalis sp.	19(0,047)	
cf. Calceolaria sp.	124(0,3)	Poaceae sp. 1	592(1,47)	
Cardos	4(0,009)	Poaceae sp. 2	23.830(59,44)	
Chenopodium album	2.671(6,66)	Polygonum aviculare	618(1,54)	
Chenopodium sp.	98(0,24)	Polygonum sp.	263(0,65)	
Cichorium intybus	679(1,44)	Portulaca sp.	3.333(8,31)	
Compositae sp.	6(0,014)	Rubus sp.	46(0,11)	
Compositae sp. 1	624(1,55)	Scirpus sp.	1.297(3,23)	
Compositae sp. 2	298(0,73)	Setaria sp.	3(0,007)	
Convolvulus arvensis	2(0,004)	cf. Silene sp.	1(0,002)	
Cuscuta suavolens	- 58(0,14)	Solanaceae	25(0,062)	
Cynara cardunculus	114(0,28)	Sorghum halepense	195(0,48)	
Cyperus sp.	1.699(4,23)	Sorghum sp.	86(0,21)	
Daucus carota	11(0,027)	Stellaria media	114(0,28)	
Digitaria sanguinalis	40(0,099)	Taraxacum officinale	367(0,91)	
Echinochloa sp.	696(1,73)	Trichocereus sp.	1(0,002)	
Echinopsis sp.	17(0,042)	cf. Urtica sp.	4(0,009)	
Eleusine tristachya	1(0,002)	Verbena sp	67(0,16)	
Erodium moschatum	1(0,002)	Vicia sp.	1(0,002)	
Erodium sp.	36(0,089)	Vitis sp 1	1(0,002)	
Galega officinalis	66(0,16)	Vitis sp. 2	18(0,044)	
Hypericum perforatum	5(0,012)	Zea Mays	2(0,004)	
Lamiaceae	5(0,012)	Semilla 1	3(0,007)	
Lamium amplexicaule	34(0,084)	. No Identificado	501(1,24)	
Leucanthemum vulgare	35(0,087)	No identificable	14(0,034)	
Lolium multiflorum	24(0,0059)	Total	40.088(100)	

TABLA 3. Número de taxa vegetales carbonizados identificados y no identificados en el conjunto de los restos arqueobotánicos analizados para el sitio Parcelación El Ingenio (Viña Errázuriz, V Región). Se indican porcentajes entre paréntesis.

	CUADRÍCULA			POZO				1			
TAXON	G-1	H	C	1	2	3	4	5	. 6	7	Total
Anthemis cotula									_	3(0,007)	3(0,007)
Aristoteliachilensis							$\mathbf{I}/$		2(0,004)		2(0,004)
Chenopodiumalbum									1(0,002)		1(0,002)
Chenopodium sp.								4.5		10(0,024)	10(0,024)
Cichorium intybus				:	27		1 2 2 2	1(0,002)		6(0,0014)	7(0,017)
Compositae sp.									2(0,004)	1 . ,	2(0,004)
Cyperus sp.	430(1,07)	435(1,08)	41(0,10)		3(0,007)	2(0,004)				4(0,009)	915(2,28)
Leucanthemum vulgare	8(0,019)	18(0,044)	,							` ,,	26(0,06)
Malva sp			·		7(0,017)	!	İ				7(0,017)
Muchlenbeckia hastulata			'	· ·					1(0,002)		1(0,002)
Poaceae sp.1		4(0,009)		1(0,002)	1(0,002)	2(0,004)	4(0,009)	10(0,024)	1(0,002)	40(0,09)	63 (0,15)
Polygonum aviculare	136(0,33)	14(0,034)	150(0,37)	11(0,027)	116(0,28)	3(0,007)		10(0,024)		` ' '	290(0,72)
Polygonum sp.	97(0,24)	23(0,057)	1(0,002)		20(0,049)			6(0,014)	10(0,024)	8(0,019)	165(0,41)
Rubus sp.	18(0,044)	4(0,009)				1(0,002)			, , ,	`	23(0,057)
Scirpus sp.	904(2,25)	311(0,77)	8(0,019)	5(0,012)		5(0,012)				47(0,11)	1.280(3,19)
Solanaceae					2(0,004)			i .		` ′ ′	2(0,004)
Sorghum sp.				i	ľ			,		86(0,21)	86(0,21)
Stellaria media					1(0,002)						1(0,002)
cf. Urtica sp.	1(0,002)	1(0,002)									2(0,004)
Verbena sp.		7(0,017)		}				3(0,007)	1(0,002)		11(0,027)
Vicia sp.							1(0,002)	1	` ' '		1(0,002)
Vitis sp 1	1(0,002)	•				1(0,002)					2(0,004)
Vitis sp. 2					5(0,012)		2(0,004)	1(0,002)			8(0,019)
Zca Mays			1(0,002)			1(0,002)	`				2(0,004)
Semilla 1						, ,				3(0,007)	3(0,007)
No Identificado	164(0,40)	19(0,047)	4(0,009)	10(0,024)	30(0,074)	1 80,002)	5 80,012)	22(0,054)	8(0,019)	6(0,014)	269 (0,67)
Inidentificable	2(0,004)	3(0,007)		8(0,019)		,		5(0,012)	4(0,009)	-(0)01.1)	22(0,054)

TABLA 4. Origen de restos vegetales identificados en el sitio El Ingenio (Viña Errázuriz, V Región). Número entre paréntesis corresponde a porcentaje.

	UNIDAD DE EX	XCAVACIÓN
ORIGEN	CUADRÍCULAS	POZOS
Prehispánico	4.255 (51,71)	29.711 (93,67)
Post-hipánico	3.515 (42,71)	1.448 (4,50)
Mixto	158 (1,92)	483 (1,13)
Total	8.228 (100)	31.860 (100)

TABLA 5. Número y tipo de restos vegetales recuperados desde cuadrículas y pozos excavados en el sitio El Ingenio (Viña Errázuriz, V Región). Se indica el estado de conservación de los restos. Entre paréntesis se indica porcentajes.

	UNIDAD DE EXCAVACIÓN						
	CUADRÍO	CULAS	POZOS				
TIPO RESTO	Número y (%)	Densidad	Número y (%)	Densidad			
Semillas	8.183(99,45)	101.77	31.782(99,75)	134.15			
Frutos	18(0,21)	0.22	13(0,004)	0,054			
Flores	27(0,32)	0.33	65(0,04)	0,034			
Número carbonizados	2.655(29,97)	30,02	542(1,70)	2.28			
Número no carbonizados	5.573(67,73)	69,31	31.318(98,29)	132.19			

TABLA 6. Número de los 10 taxa más frecuentes en cuadrículas y pozos excavados para el sitio El Ingenio (Viña Errázuriz, V Región). Se indica conservación de los restos. Número entre paréntesis corresponde a porcentaje.

٠.	UNIDADDEEXCAVACIÓN							
TAXÓN	CUADR	ÍCULA		1020				
	NOCARBONIZADO	CARBONIZADO	TAXA	NOCARBONIZADO	CARBONIZADO			
Chenopodium album	1.906(23,16)	0	Poaceae sp. 2	23.318(73,18)	0			
Cyperus sp.	780(9,47)	906(11,01)	Portulaça sp.	3.219(10,10)	هٔ ۱			
Scirpus sp.	12(0,14)	1.223(14,86)	Chenopodium album	765(2,40)	1(0,0031)			
Echinochloa sp.	665(8,08)	0	Malva sp.	733(2,30)	7(0,021)			
Poaceae sp. 2	469(5,59)	0 .	Cichorium intybus	668(2,09)	7(0,021)			
Taraxacum officinale	306(3,71)	. 0	Compositae sp. 1	624(1,95)	1(0,021)			
Poaceae sp. 1	248(3,01)	4(0,048)	Polygonum aviculare	277(0,86)	140(0,43)			
Polygonum sp.	84(1,02)	121(1,47)	Compositae sp 2	298(0.93)	140(0,43)			
Polygonum aviculare	34(0,41)	150(1,82)	Poaceae sp. 1	237(0,74)	59(0,18)			
Sorghum Halepense	183(2,34)	0	Calandrinia sp.	211(0,66)	0			

Discusión

El análisis arqueobotánico permitió delimitar el sitio e indicar los sectores con depósitos más o menos densos, tanto fuera como dentro del sitio. Básicamente, en los pozos se observó más densidad de restos vegetales no carbonizadas y de semillas que en las cuadrículas, siendo los taxa mayoritariamente de origen posthispánico. En cambio, en las cuadrículas excavadas dentro del sitio se constató mayor densidad de frutos y restos vegetales carbonizados que en los pozos y dominaron los taxa de origen post-hipánico junto con los de origen mixto. Finalmente, ambos sectores se diferenciaron porque el grueso de los restos vegetales carbonizados presentes en los pozos o fuera del sitio corresponden a dos taxa: Scirpus y Cyperus, mientras que en las cuadrículas los restos vegetales carbonizados se distribuyeron en un mayor número de taxa. Sin embargo, este orden se invirtió en el caso de los restos no carbonizados que fueron más numerosos en los pozos, estando representados por pocos taxa. En las cuadrículas se observa una mayor riqueza de taxa vegetales correspondientes a restos no carbonizados. Estos resultados sugieren la necesidad focalizar el muestreo arqueobotánico dentro del sitio, a la vez que se reduce la necesidad de muetras en pozos control. Esta forma de dirigir el muestreo parece particularmente adecuada en sitios arados de extensas dimensiones, donde se pudieron haber dado condiciones de conservación diferenciadas de un sector a otro. En consecuencia los sitios de pequeñas dimensiones sufrirían con más intensidad los efectos de la perturbación antrópica y natural, por lo que intesificar esfuerzos de muestreo arqueobotánico en ellos no parece adecuado.

La abundancia de restos vegetales se concentró particularmente en los pozos de control. Aquí, los taxa identificados fueron en su mayoría post-hispánico. Ello podría ser reflejo de la lluvia de semillas actuales en el sitio. La gran perturbación antrópica observada en el sitio que se refleja en la falta completa de estratigrafía, habría sido agudizada por la gran humedad del mismo. Esto se debe probablemente a la cercanía con el Estero Lo Campo y se confirma por la presencia de caracoles, los cuales aparecen en numerosas unidades. La carbonización de algunas semillas probablemente es el resultado de actividades recientes, como por ejemplo la quema de campos cultivados. Ello explicaría la presencia de especies de introducción post-hispánica como *Polygonum aviculare* (duráznillo de origen mediterráneo, FOX 1990) en estado carbonizado.

El avanzado estado de deterioro de los restos vegetales no permite hipotetizar respecto de la existencia de cultígenos prehispánicos en el sitio. Aristotelia chilensis y M. hastulata son frutos silvestres recolectables,

Poaceae sp. es una familia amplia que comprende géneros y especies que han sido tanto cultivados como recolectados. Las especies carbonizadas más abundantes del sitio se utilizan comúnmente como materia prima en la armazón de techumbre, o como combustible (Cyperus sp., Scirpus sp., Poaceae). Eventualmente ellas son comestibles, o poseen propiedades medicinales y se usan como tintura (A. chilensis, M. hastulata). En suma, se trata de plantas que se vinculan a actividades domésticas realizadas por un grupo de escala mediana a pequeña. Otros sitio de la región Metropolitana, como Blanca Gutiérrez (PAVLOVIC et al. 1998), Talagante, Popeta, Peñaflor, y Puangue (BELMAR y QUIROZ 1999, 2000b) presentan condiciones de conservación similares a las descritas para Parcelación El Ingenio. En ellos se ha rescatado asimismo, evidencia botánica que refleja actividades de recolección (Rubus sp., Scirpus sp., M. hastulata, A. chilensis, Cryptocarya alba, Schinus latifolius) y de cultivo (C. quinoa y Zea mays). En particular Scirpus, es una especie común en Blanca Gutiérrez, Talagante y Parcelación El Ingenio. En este último, la presencia de Scirpus sp. y Cyperus sp. sería indicador de condiciones húmedas. Desafortunadamente, el análisis arqueobotánico no aportó evidencia directa de taxa higrófilos como C. patagua, D. Winteri o Myrceugenia sp. Ello podría deberse a las bajas condiciones de conservación en el sitio, así como de la ausencia de estas plantas en el lugar. Por ello no es posible confirmar la presencia de bosques higrófilos en el sitio para el Período Intermedio Tardío. Este vacío informativo podría ser enfrentado recurriendo a evidencia de otra naturalezacomo el anáilsis de polen.

Finalmente, es necesario destacar el valor que presentan los estudios arqueobotánicos en sitios que presentan gran perturbación, como aquellos localizados en sitios arados. A pesar del elevado deterioro de los materiales recuperados, ellos aportan evidencia siginificativa para entender el modo de uso de las especies vegetales, así como hacer inferencias del ambiente que habría sustentado las ocupaciones prehispánicas. El esfuerzo de extracción y análisis sin embargo, debería centrarse al interior del sitio, más que a la comparación con muestras control. Esta evidencia, en conjunto con el material tradicionalmente recuperado en excavaciones arqueológicas, permite proponer hipótesis más robustas respecto fr modos de asentamiento y uso de recursos por poblaciones prehispánicas.

RECONOCIMIENTOS

Comprometen mi gratitud Bárbara Saavedra y Nuriluz Hermosilla, por su colaboración muy cercana en la elaboración de este manuscrito y también por su paciencia. Agradezco a Carolina Belmar y Carolina Henríquez por su cooperación estrecha en la etapa de análisis de los materiales. Este trabajo fue financiado por FONDECYTNº 1990067

NOTAS

1. Entendemos por origen mixto los taxa que podrían ser tanto de origen Posthispánico como Prehispánico debido al grado no específico de su identificación.

REFERENCIAS

- BELMAR, C. y QUIROZ, L. 1999. Informe arqueobotánico: Proyecto FONDECYT 1980713. En informe FONDECYT 1980713.
- 2000a. Informe Arqueobotánico: Sitio El Cebollar. Proyecto Fondecyt 1900667. En informe Fondecyt 1900667.
- —— 2000b. Informe Preliminar y arqueobotánico del sitio Peñaflor (E-301-2) y Puangue. En informe FONDECYT 1980713.

- CLASON, A.T. y W. PRUMMEL. 1977. Collecting, Sieving and Archaeozoological Research. *Journal of Archaeological Science* 4: 171-175.
- DALY, P. 1969. Approaches to Faunal Analysis in Archaeology. American Antiquity 34:146-155.
- DAWSON, E. 1969. Bird remains in Archeology. Ciencia en Arqueología. Brothwell, D. y E. Higgs (eds). Fondo de Cultura Económica.
- FOX, M. 1990. Meditarranean weeds: exchanges of invasive plants between the five mediterranean regions of the world. En: Biological invasions in Europe and in the mediterraean basin. Di Castri. F, Hansen. A.J. y Debussche, M. (eds). Kluger Academics Publishers, Dorcrecht.
- HERMOSILLA, N, B. SAAVEDRA; D. PAVLOVIC; J.CASTELLETI y L. QUIROZ. 1999. El prodigioso Estero de Lo Campo: estudio de sitios arados en el curso Superior del Río Aconcagua, Quinta Región, Chile. Actas del XIII Congreso Nacional de Arqueología Argentina. Córdoba. En Prensa.
- HENRÍQUEZ, C. 2000. Arqueobotánica de la Carverna el Carrizo, Cordón de Chacabuco. Boletín del Museo de Historia Natural: En Prensa.
- HEUSSER, C. 1983. Quaternary Pollen record from Laguna Tagua, Chile. Science 219:1429-1432.
- MARTIN, A. y W. BARKLEY. 1973. Seed Identification Manual. University of California Press.
- MASSONE, M., DURÁN, E., SÁNCHEZ, R., FALABELLA, F., CONSTANTINESCU, F., HERMOSILLA, N. y STEHBERG, R. 1998. Taller Cultura Aconcagua: Evaluación y Perspectiva. *Boletín de la Sociedad Chilena de Arqueología* 25: 24-30.
- MATTHEI, O. 1995. Manual de las malezas que crecen en Chile. Alfabeta Impresores. Santiago.
- MIKSICEK, C. 1987. Formation of the archaeobotanical record. Advances in Archaeological Method and Theory 10: 211-247.
- PAVLOVIC, D., TRONCOSO, A., MASSONE, M., SÁNCHEZ, R. 1998. La Pequeña Casa en la Ladera: Blanca Gutiérrez (Rml 008), un asentamiento habitacional de la Cultura Aconcagua, *Boletín de la Sociedad Chilena de Arqueología* 25: 13-18.
- PLANELLA, M. T. y TAGLE, B. 1998. El sitio agroalfarero temprano de La Granja: un aporte desde la perspectiva arqueobotánica. Publicación Ocasional del Museo Nacional de Historia Natural 52.
- —— 2000. Los períodos arcaico y agroalfarero temprano como materia de estudio en la revisión de los inicios de la presencia de cultígenos en la zona central de Chile. XV Congreso Nacional de Arqueología Chilena. Arica. En Prensa.
- SAAVEDRA, B., T. TORRES y G. ROJAS. 2000. Contenido de polen en madrigueras de viscacha (Lagidium viscacia) provenientes de la zona Mediterránea del norte de Santiago. Noticiario Mensual del Museo Nacional de Historia Natural. En Prensa.
- STRUEVER, S. 1968. Flotation Techniques for the Recovery of Small-Scale Archaeological Remains. *American Antiquity*, 33:353-362.
- VILLAGRÁN, C. y VARELA, J. 1990. Palynological Evidence for Increased Aridity on the Central Chilean coast during the Holocene. *Quaternary Research* 34.
- WATSON, P.J. 1976. In pursuit of prehistory subsistence: a comparative account of contemporary flotation techniques. *Mid Continental Journal of Archaeology* 1.